
 

COMPREHENSIVE HOME MONITERING SYSTEM 

WITH ENVIRONMENTAL SENSING USING ESP32 

A Project Report Submitted and Partial Fulfilment of The Requirements for The 

Award of Degree Of 

POLYTECHNIC 

IN 

ELECTRONICS AND COMMUNICATION ENGINEERING 

 

Submitted by 

     M. PAVAN KUMAR                 K. PRASAD                      A. YUVARAJ 

(21296-EC-052)                          (21296-EC-043)                 (21296-EC-006) 

Under The Esteemed Guidance of 

Ms. B. RADHA DEVI, M. Tech 

Assistant Professor 

 

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING 

CHAITANYA ENGINEERING COLLEGE 

(Approved by AICTE) (Affiliated to SBTET, AP) 

Madhurawada, Visakhapatnam- 530048, A.P 

(2021-2024) 

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING  



 

CHAITANYA ENGINEERINF COLLEGE 

(Approved By AICTE) (Affiliated To SBTET, AP) 

Madhurawada, Visakhapatnam – 530048, A.P 

 

CERTIFICATE 

 

This is to certify that the project titled “COMPREHENSIVE HOME 

MONITERING SYSTEM WITH ENVIRONMENTAL SENSING 

USING ESP32” is a work done by  M. PAVAN KUMAR (21296-EC-

052), K. PRASAD (21296-EC-043), A. YUVARAJ (21296-EC-006) 

during the academic year 2021-2024 under our guidance. The work 

submitted to the “Department Of Electronics And Communication 

Engineering” in partial fulfillment for the award of the  polytechnic in 

“Electronics And Communication Engineering”. 

 

 

 

Project guide                                                               Head of The Section 

Ms. B. RADHA DEVI, M. Tech                                                       Mrs. S. SIVALEELA, M. Tech 

Assistant professor                                                       Assistant professor 

ECE Department, CEC                                                 ECE Department, CEC 

 



 

ACKNOWLEDGEMENT 

         With great solemnity and sincerity, we offer our sincere thanks to management 

for providing all resources to complete our project successfully. We feel happy to 

record over sincere respect our principal Dr. G. BHANU PRAVEEN, Ph. D for his 

Valuable suggestions and encouragement while pursuing our study at college 

campus. 

 

         We express my sincere thanks to Mrs. S. SIVALEELA, M. Tech Lecturer in 

ECE, Chaitanya Engineering College, Head of the Department of Electronics and 

Communication Engineering for her Co-operation and persistent encouragement  

 

        We thank my guide Ms. B. RADHA DEVI, M. Tech for spending her valuable 

time to review and analyze my project at every stage. I consider myself extremely 

fortunate to have the opportunity of associating with her. We also thank full to all 

my faculty members, office staff and technical staff for their kind Co-operation. 

 

        Finally, our wish to take this opportunity to express our deep gratitude to all 

our friends who have extended their Co-operation in various ways during the project 

work. It is our pleasure acknowledges the help of all those individuals. 

 

M. PAVAN KUMAR 

(21296-EC-052) 

 

K. PRASAD 

(21296-EC-043) 

 

A. YUVARAJ 

(21296-EC-006) 



i 
 

ABSTRACT 

 

 

             This home monitoring system is like a smart helper for your house and 

plants. It uses a special ESP32 module to keep an eye on things like temperature, 

humidity, earthquakes, harmful gases, motion, and soil moisture. The information it 

collects is shown in real-time on a website and a small display in your home. This 

helps you understand what's happening in your house and take care of your plants 

better. The system is pretty smart! It can tell you if the temperature and humidity are 

just right for your comfort. It even warns you if there's an earthquake or if there are 

harmful gases around. The motion sensors help with security and let you know if 

someone's moving around. And if you have plants, the system makes sure they get 

just the right amount of water for healthy growth. The best part is that you can see 

all this information on a website from any device with the internet. Plus, there's a 

small display at home for quick updates. It's like having a helpful assistant to keep 

your home safe and your plants happy, thanks to the clever ESP32 technology. 

 

  



ii 
 

CONTENTS 

Abstract……………………………………………………………… i  

List of Figures……………………………………………………….     v 

List of Tables…………………………………………………………   vi  

List of Abbreviations…………………………………………………   vii 

CHAPTER- 1 :- INTRODUCTION                  1-5  

1.1 Introduction 

CHAPTER- 2: - SYSTEM MODELLING AND DESIGN                  6-9  

2.1    Problem Definition 

2.2    Functional Description 

2.3    Data Flow Diagram 

CHAPER- 3: -HARDWARE SYSTEM REQUIREMENTS                10-33 

3.1     Hardware Requirements 

3.1.1 Mq2 Gas Sensor 

3.1.2 Dht-11 Sensor 

3.1.3 Flame Sensor 

3.1.4 SW-420 Sensor 

3.1.5 16*2 Lcd Display 

3.1.6 Soil Moisture Sensor  

3.1.7 Water Pump 5v 



iii 
 

3.2     Microcontroller Esp32 

3.3     Features of Microcontroller 

3.4     Pin Diagram of Esp32 

3.5     Basic Terminologies in Esp32 

 

CHAPTER- 4: - HARDWARE SYSTEM REQUIREMENTS          34-49 

4.1   Language References 

4.2   Software Requirements 

4.2.1 Embedded C 

4.2.2 HTML 

4.2.3 CSS 

4.2.4 Java Script 

4.3   Arduino Development Environment 

4.4   Steps to Upload Code to Esp32 Using Arduino Ide 

4.4.1 Install Arduino IDE 

4.4.2 Run Installer 

4.4.3 Install ESP-32 Board Support 

4.4.4 Select ESP-32 Board 

4.4.5 Write Code 

4.4.6 Upload Code 



iv 
 

          4.5 User Interface Using HTML & CSS 

4.6   HTTP Protocol 

4.7   SMTP Protocol 

CHAPTER- 5: - WORKING OF THE SYSTEM                              50 - 52 

5.1 Circuit Diagram 

5.2 Working 

CHAPTER- 6: - INTERFACING AND TESTING                             53 - 58 

6.1 DHT-11 Sensor Interfacing 

6.2 MQ2 Sensor Interfacing 

6.3 SW-420 Sensor Interfacing 

6.4 Flame Sensor Interfacing 

6.5 Soil Moisture Sensor Interfacing 

CHAPTER- 7: - HIGHLIGHTS                                                          59 - 60 

7.1     Advantages 

7.2     Applications 

RESULT                                                                                                61  

CONCUSION                                                                                        62 

FUTURE SCOPE                                                                                  63      

APPENDIX                                                                                            64 - 82                                                                  



v 
 

LIST OF FIGURES 

• Fig 2.2: Functional Description of the System    8 

• Fig 2.3: Data Flow Diagram of the System     9 

• Fig 3.1.1: MQ-2 Gas Sensor Module      11 

• Fig 3.1.2 DHT-11 Sensor Module      14 

• Fig 3.1.3: IR Flame Sensor Module      16 

• Fig 3.1.4: SW-420 Vibration Sensor Module     18  

• Fig 3.1.5: 16*2 LCD Display       20 

• Fig 3.1.6: Soil Moisture Sensor Module     22  

• Fig 3.1.7: 5v Water Pump       24 

• Fig 3.2(a): ESP-32 Micro-Controller Module    25 

• Fig 3.2(b): Pin Out of ESP-32 Micro-Controller Module   26 

• Fig 4.3: Arduino IDE Logo       38 

• Fig 4.6: Types of HTTP Protocol      46 

• Fig 5.1: Circuit Diagram of the System     51 

• Fig 6.1: DHT-11 Sensor Interfacing with ESP-32    54 

• Fig 6.2: MQ-2 Sensor Interfacing with ESP-32    55 

• Fig 6.3: SW-420 Vibration Sensor Interfacing with ESP-32  56  

• Fig 6.4: Flame Sensor Interfacing with ESP-32    57 

• Fig 6.5: Soil Moisture Sensor Interfacing with ESP-32   58 

• Fig (a): Initialization and Working of the System    61 

• Fig (b): Initialization and Working of the System    61 



vi 
 

LIST OF TABLES 

 

• Table 3.1.1.2 Pin Description of MQ2 Gas Sensor    13 

• Table 3.1.2.2 Pin Description of DHT-11 Sensor     15 

• Table 3.1.3.2 Pin Description of Flame Sensor    18 

• Table 3.1.4.2 Pin Description of SW-420 Vibration Sensor  19  

• Table 3.1.5.2 Pin Description of 16*2 I2C Module    21 

• Table 3.1.6.2 Pin Description of Soil Moisture Sensor   23 

• Table 3.5 Pin Description of Xtensa Lx6 processor    29 

 

 

 

 

 

 

 

 

 

 



vii 
 

LIST OF ABBRIVATIONS 

• LCD – Liquid Crystal Display 

• HMS – Home Monitoring System 

• ESP32 - digital temperature and humidity sensor 

• TTL Logic - Transistor–transistor logic 

• AO – Analog Output 

• DO – Digital Output 

• IR Flame Sensor – Infrared Flame Sensor 

• LED – Light Emitting Diode  

• SIG – Signal 

• ULP – Ultra – Low Power 

• RAM – Random Access Memory 

• RTC – Real-Time Clock 

• PWM – Pulse-Width Modulation 

• UART - Universal Asynchronous Receiver-Transmitter 

• GPIO - General-Purpose Input/Output     

• ADC – Analog to Digital Converter 

• HTML – Hyper Text Markup Language 

• CSS - Cascading Style Sheets 

• JS – Java Script 

• HTTP - Hyper Text Transfer Protocol 

• SMTP - Simple Mail Transfer Protocol 

 

 



1 
 

 

 

 

 

 

 

 

 

 

 

CHAPTER-1 

       INTRODUCTION 

 

 

 

 

 

 

 



2 
 

INTRODUCTON 

1.1 INTRODUCTION 

 

In today's fast-paced world, ensuring the safety and well-being of our 

homes has become paramount. The advent of smart technologies has 

empowered homeowners to monitor and secure their residences 

remotely. This project introduces a comprehensive Home Monitoring 

System (HMS) that utilizes the ESP32 microcontroller in conjunction 

with various sensors to provide real-time data on environmental 

conditions, security, and automation. By incorporating sensors such as 

gas sensors, DHT11 sensors, earthquake sensors, flame sensors, soil 

moisture sensors, and a water pump, along with a user-friendly web 

interface for data monitoring and security features like email alerts and 

home light indication, this system aims to offer a holistic solution to 

home monitoring and security needs. 

 

1. Overview 

 

The Home Monitoring System (HMS) is designed to offer homeowners 

a robust and user-friendly platform to monitor, control, and secure their 

homes remotely. The integration of the ESP32 microcontroller serves as 

the backbone of the system, facilitating seamless communication 

between sensors, actuators, and the user interface. By harnessing the 

power of various sensors, the HMS provides comprehensive insights 

into environmental parameters such as temperature, humidity, gas 

presence, earthquake detection, flame detection, and soil moisture 

levels. Additionally, the inclusion of a water pump enables automated 

irrigation based on soil moisture levels, enhancing the system's utility. 

Moreover, the implementation of a web-based interface allows users to 

monitor real-time data and receive email alerts for critical events, 

ensuring timely responses to potential threats or emergencies. 



3 
 

Furthermore, the integration of security features such as light indication 

in the home adds an extra layer of protection against intrusions. 

 

The "Home Monitoring System" is an innovative project designed to 

enhance home safety and comfort using user-friendly technology. 

Leveraging the powerful ESP32 microcontroller and an array of sensors 

including the MQ2 for gas detection, SW-420 for vibrations, flame 

sensor for fire safety, and DHT-11 for temperature and humidity 

monitoring, this system acts as a vigilant guardian for your living space. 

The sensors collaborate seamlessly to provide real-time insights into 

potential hazards, ensuring a secure and pleasant environment. 

 

Taking a step further into the digital realm, we've created a user-friendly 

website that allows you to remotely monitor your home's conditions. 

Whether it's checking gas levels, sensing vibrations, or keeping an eye 

on temperature, the information is at your fingertips, providing you with 

a sense of control and peace of mind no matter where you are. 

Additionally, the integration of a 16x2 LCD display provides a tangible 

interface for quick and easy updates on essential information. More than 

just a technological endeavor, the "Home Monitoring System" is a 

commitment to making homes safer and smarter, inviting you to join us 

in redefining the standards of home security and convenience for a better 

and connected future. 

 

2. System Components 

 

ESP32 Microcontroller: The ESP32 microcontroller serves as the 

central processing unit of the Home Monitoring System. Its dual-core 

architecture, coupled with built-in Wi-Fi and Bluetooth capabilities, 

enables efficient data processing and wireless communication with 

sensors, actuators, and the user interface. 

 

 

 



4 
 

Sensors: 

 

Gas Sensor: Detects the presence of hazardous gases such as carbon 

monoxide (CO) or methane (CH4), providing early warnings to prevent 

potential accidents. 

 

DHT11 Sensor: Measures temperature and humidity levels, helping 

users maintain optimal indoor conditions for comfort and health. 

Earthquake Sensor: Detects seismic activity and provides alerts to 

mitigate risks and ensure the safety of occupants. 

 

Flame Sensor: Identifies the presence of flames, enabling rapid 

response to fire emergencies and preventing property damage. 

 

Soil Moisture Sensor: Monitors soil moisture levels to facilitate 

efficient irrigation and plant care, conserving water resources and 

promoting healthy vegetation. 

 

Water Pump: Actuates irrigation systems based on soil moisture data, 

automating the process of watering plants. 

 

 

3. User Interface and Security Features 

 

Web-Based Interface: The HMS features a user-friendly web interface 

accessible from any internet-enabled device. Users can view real-time 

data from sensors, control actuators, and configure system settings 

remotely. 

 

Email Alerts: The system sends email alerts to users in case of critical 

events such as gas leaks, earthquakes, or fire incidents, ensuring timely 

response and intervention. 

 



5 
 

Light Indication: Integrated light indication in the home provides 

visual alerts in case of security breaches or system anomalies, enhancing 

situational awareness and deterring intrusions. 

 

Email Login: Users can securely access the web interface using email-

based authentication, safeguarding sensitive data and ensuring 

authorized access to system controls and settings. 

 

The Home Monitoring System presented in this project offers a 

comprehensive solution for monitoring and securing residential 

premises using the ESP32 microcontroller and a range of sensors. By 

integrating environmental monitoring, automation, and security features 

with a user-friendly web interface, the system empowers homeowners 

to remotely manage their homes and respond effectively to potential 

threats or emergencies. With its versatility, scalability, and emphasis on 

user experience and safety, the HMS represents a significant step 

towards creating smarter, safer, and more connected homes. 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

 

 

 

 

 

 

 

 

 

CHAPTER-2 

SYSTEM MODELLING AND DESIGN 

 

 

 

 

 

 

 

 

 



7 
 

2.1 PROBLEM DEFINITION 

Our project integrates eight circuits, including ESP-32, DHT-11, flame, 

MQ2 gas, LCD display, water pump, soil moisture, and SW-420 vibration 

sensors, optimizing their collaboration for wireless information sharing. Wired 

connections play a crucial role in ensuring efficient communication among 

devices. We aim to explore and address challenges in data transfer to enhance 

overall system performance. The goal is to create a seamless network where 

sensors work together, utilizing both wireless and wired mediums effectively.  

 

Here, ESP32 acts as a heart of our project, in the above block diagram 

we can see that there are DHT-11, flame, MQ2 gas, LCD display, water pump, 

soil moisture, and SW-420 vibration sensors which acts as input interface to 

the micro controller and web interface, 16*2 lcd display, water pump acts a 

output interface to the micro controller, here the input and output interface can 

be indicated with the arrow lines with the respective the micro controller 

performs with the respective commands and delay which is programmed on 

Arduino IDE software 

 

 

 

 

 

 



8 
 

2.2 FUNCTIONAL DESCRIPTION 

 

 

 

 

 

 

Fig 2.2: Functional Description of the System 

The constituent parts involved in the process are 

1. Sensors  

2. ESP32 with Xtensa LX6 processor 

3. Network 

4. 16*2 display 

5. Web interface  

6. Motors 

7. Power supply (12v) 

 

First block portrays to be sensors which receives, verifies and forwards the message 

to the Micro-controller. The micro – controller process the signal and transmit the 

data to the web interface through the esp32 internal web server and display the data 

in 16*2 lcd display and web interface if any sensor value greater than the threshold 

value then the alert message is sent to the user and nearby police, fire and hospital if 

any emergency through email and also monitor the plant health and display the data 

to user in web interface and 16*2 lcd display 

 

ESP32 
MICROCONTROLLER 

POWER SUPPLY (12V) 

MOTORS 

WEB INTERFACE 
SENSORS 

NETWORK 

16*2 

DISPLAY 



9 
 

2.3 DATA FLOW DIAGRAM 

 

Fig 2.3: Data Flow Diagram of the System 

The process begins with the initialization of component ports. Initially, the power 

supply is activated to energize the circuit. Five sensors are strategically positioned 

throughout the house to detect fluctuations in temperature, gas levels, seismic 

activity, and fire outbreaks. Should any of these sensors detect values surpassing 

predefined thresholds, an email alert is promptly dispatched. Simultaneously, the 

pertinent data is relayed and showcased on both a web interface and a 16x2 LCD 

display. 

Furthermore, if the soil moisture sensor detects a moisture level exceeding the set 

threshold, the water pump is activated to initiate the watering process for the 

plants. This comprehensive system ensures timely detection and response to 

environmental changes within the household, enhancing safety and facilitating 

efficient plant care. 



10 
 

 

      

 

 

 

 

 

CHAPTER -3 

  HARDWARE SYSTEM REQUIREMENTS 

 

 

 

 

 

 

 

 



11 
 

3.1 HARDWARE COMPONENTS 

3.1.1 MQ2 GAS SENSOR 

            The MQ2 gas sensor is a small electronic device designed to detect 

various gases in the air. It operates by measuring the concentration of gases 

such as methane, propane, carbon monoxide, and smoke 

 

 

Fig 3.1.1 MQ2 gas sensor module 

This sensor is commonly used in applications like gas leakage detectors, 

smoke alarms, and air quality monitoring systems. The MQ2 sensor works by 

changing its electrical resistance in response to the presence of different gases, 

and this change is then converted into a signal that can be interpreted by a 

microcontroller or other electronic devices. Its compact size and sensitivity 

make it a valuable tool in ensuring safety and maintaining air quality in 

various environments. 



12 
 

3.1.1.1 Features of MQ2 Gas Sensor 

Hardware Features 

1. Operating Voltage is +5V 

2. Can be used to Measure or detect LPG, Alcohol, Propane, 

Hydrogen, CO and even methane 

3. Analog output voltage: 0V to 5V 

4. Digital Output Voltage: 0V or 5V (TTL Logic) 

5. Preheat duration 20 seconds 

6. Can be used as a Digital or analog sensor 

7. The Sensitivity of Digital pin can be varied using the 

potentiometer 

3.1.1.2 Pin Description 

        The MQ2 gas sensor features essential pins for seamless integration into 

electronic systems. The VCC pin connects to the power source, typically 5V, 

supplying energy to the sensor. The GND pin establishes the ground connection, 

ensuring a complete circuit and proper sensor functionality. The AO (Analog 

Output) pin produces an analog signal proportionate to the detected gas 

concentration, facilitating communication with microcontrollers. The DO (Digital 

Output) pin provides a digital signal that switches between high and low states based 

on predetermined gas concentration thresholds. Additionally, the sensor includes a 

heater element, connected to the power source, which maintains a consistent 



13 
 

temperature for the gas-sensitive component, ensuring reliable and accurate gas 

detection. 

Pin Number Pin Name  Function 

1 Vcc (+5v) This pin powers the module, typically the 

operating voltage is +5V 

2 Ground (GND) Used to connect the module to system 

ground 

3 Digital Out You can also use this sensor to get digital 

output from this pin, by setting a threshold 

value using the potentiometer 

4 Analog Out This pin outputs 0-5V analog voltage 

based on the intensity of the gas  

 

Table 3.1.1.2 Pin Description of MQ2 gas sensor 

3.1.2 DHT-11 SENSOR 

               The DHT-11 sensor is a straightforward yet efficient device 

designed for measuring temperature and humidity in the surrounding 

environment. With its compact size and ease of use, the DHT-11 has become 

a popular choice in various applications, such as weather stations, home 

automation systems, and climate control devices. This sensor employs a 

digital output to relay temperature and humidity data, simplifying integration 

with microcontrollers like Arduino. Its affordability and reliability make the 

DHT-11 a practical solution for individuals and hobbyists looking to monitor 

and control the indoor climate conditions with ease. 



14 
 

 

Fig 3.1.2 DHT-11 Sensor Module 

The DHT-11 sensor operates by using a calibrated digital signal output, 

making it user-friendly for those with limited electronics experience. It 

utilizes a humidity-sensitive component and a thermistor to measure the 

respective parameters accurately. With its low cost and uncomplicated design, 

the DHT-11 sensor enables enthusiasts and developers to incorporate 

temperature and humidity sensing capabilities into their projects without 

extensive technical knowledge, contributing to the accessibility of 

environmental monitoring in a variety of applications. 

3.1.2.1 Features of DHT-11 Sensor 

1. Operating Voltage: 3.5V to 5.5V 

2. Operating current: 0.3mA (measuring) 60uA (standby) 

3. Output: Serial data 

4. Temperature Range: 0°C to 50°C 

5. Humidity Range: 20% to 90% 



15 
 

6. Resolution: Temperature and Humidity both are 16-bit 

7. Accuracy: ±1°C and ±1% 

3.1.2.2 Pin Description 

             The DHT-11 sensor features four essential pins for its operation. The VCC 

pin connects to the power source, typically at 3.3V or 5V, providing the necessary 

electrical energy. The Data Out pin is crucial, as it outputs a digital signal containing 

temperature and humidity data that can be read by a microcontroller or similar 

device. The third pin, labeled NC (Not Connected), is not utilized in standard 

applications and can be left unconnected. Ground (GND) is the fourth pin, requiring 

connection to the ground (0V) to complete the electrical circuit and ensure proper 

functionality. Additionally, for stability, it's common to include a resistor (usually 

5k ohms) between the VCC and Data Out pins. This resistor, known as a pull-up 

resistor, helps maintain a reliable signal transmission between the sensor and the 

connected electronics. 

Pin Number Pin Name  Function 

1 Vcc Power supply 3.5V to 5.5V 

2 Data Outputs both Temperature and Humidity through 

serial Data 

3 Nc No Connection and hence not used 

4 Ground Connected to the ground of the circuit 

 

Table 3.1.2.1 Pin Description of Dht-11 Sensor 

 

 



16 
 

3.1.3 Flame Sensor Module 

           Flame Sensor Module Fire Sensor Module infrared Receiver Ignition source 

detection module This tiny Flame sensor infrared receiver module ignition source 

detection module is Arduino compatible. It can use to detect flame or wavelength of 

the light source within 760nm~1100nm also useful for Lighter flame detection at a 

distance of 80cm. Greater the flame, the farther the test distance. 

 

 

 

Fig 3.1.3 Ir Flame Sensor Module 

It has a Detect angle of 60 degrees and is very sensitive to the flame spectrum. 

It produces the one-channel output signal at the D0 terminal for further 

processing like an alarm system or any switching system. The sensitivity is 

adjustable with the help of a blue potentiometer given on the board. 

 

 



17 
 

3.1.3.1 Features of IR Flame Sensor Module  

1. Built-in a Potentiometer for Sensitivity Control. 

2. Onboard Signal Output Indication, Output effective signal is high, and at the 

same time the indicator lights up, and the output signal can directly connect 

to the microcontroller IO. 

3. Can detect fire or wavelength in 760 ~ 1100 nm nano within the scope of the 

light source. 

4. The Detection Angle is about 60 degrees, and the flame spectrum is especially 

sensitive 

5. The flame of the most sensitive sensors flame, the steady light is also a 

response, generally used for fire alarm purposes. 

3.1.3.2 Pin Description 

                      The IR Flame Sensor has three main pins for connection. The VCC pin 

is where you connect the power, usually 5V. The GND pin is for the ground 

connection. The DO pin provides a digital output signal that indicates the presence 

or absence of a flame. Additionally, there's an AO pin for analog output if you need 

a continuous measure of the flame intensity. Keeping the wiring simple, these pins 

enable easy integration with microcontrollers or other devices for flame detection 

applications. 

 



18 
 

Pin Number Pin Name Function 

1 Vcc +5 v power supply 

2 Gnd Ground (-) power supply 

3 Out Digital Output (0 or 1) 

 

Table 3.1.3.1 Pin Description of Flame Sensor 

3.1.4 SW-420 (Vibration Sensor) 

This Vibration Sensor Module consists of an SW-420 Vibration Sensor, resistors, 

capacitor, potentiometer, comparator LM393 IC, Power, and status LED in an 

integrated circuit. It is useful for a variety of shocks triggering, theft alarm, smart 

car, an earthquake alarm, motorcycle alarm, etc. 

                   

Fig 3.1.4 : SWW-420 Vibration Sensor Module 

3.1.4.1 Features of SW-420 (Vibration Sensor) 

1. Operating Voltage: 3.3V to 5V DC 



19 
 

2. Operating Current: 15mA 

3. Using SW-420 normally closed type vibration sensor 

4. LEDs indicating output and power 

5. LM393 based design 

6. Easy to use with Microcontrollers or even with normal Digital/Analog IC 

7. With bolt holes for easy installation 

8. Small, cheap and easily available 

3.1.4.2 Pin Description of SW-420 (Vibration Sensor) 

The SW-420 vibration sensor has three pins: VCC, GND, and SIG. Connect VCC to 

the power supply (typically 5V), GND to the ground, and SIG to a digital input pin 

on a microcontroller. When vibrations are detected, the SIG pin sends a digital signal 

(HIGH) to indicate motion. Adjust sensitivity by tweaking the potentiometer on the 

sensor, allowing for customization in detecting various vibration levels. Its 

straightforward three-pin setup makes it easy for beginners to integrate into projects 

requiring vibration sensing. 

Pin Number Pin Name Function 

1 Vcc The Vcc pin powers the module, typically 

with +5V 

 

2 Gnd Power Supply Ground 

 

3 D0 Digital Out Pin for Digital Output. 

 

 

Table 3.1.4.2 Pin Description of SW-420 (Vibration Sensor) 



20 
 

3.1.5 16x2 LCD  

 we know that each character has (5×8=40) 40 Pixels and for 32 Characters we will 

have (32×40) 1280 Pixels. Further, the LCD should also be instructed about the 

Position of the Pixels. Hence it will be a hectic task to handle everything with the 

help of MCU, hence an Interface IC like HD44780 is used, which is mounted on the 

backside of the LCD Module itself. The function of this IC is to get the Commands 

and Data from the MCU and process them to display meaningful information onto 

our LCD Screen. You can learn how to interface an LCD using the above mentioned 

links. If you are an advanced programmer and would like to create your own library 

for interfacing your Microcontroller with this LCD module then you have to 

understand the HD44780 IC working and commands which can be found its 

datasheet. 

 

Fig 3.1.5 : 16*2 LCD Display 

3.1.5.1 Features f 16x2 LCD With I2C 

1. I2C Address Range 0x20 to 0x27 (Default=0x27, addressable) 

2. Operating Voltage 5 Vdc 

3. Backlight: White 

4. Contrast: Adjustable by potentiometer on I2c interface 



21 
 

5. Size: 80mm x 36mm x 20 mm 

6. Viewable area: 66mm x 16mm 

3.1.5.2 Pin Description 

The 16x2 LCD with I2C module has four pins: VCC for power, GND for ground, 

SDA for data transmission, and SCL for clock signal. The VCC pin connects to the 

power source, GND to the ground, SDA to data, and SCL to the clock line. The I2C 

module simplifies connections by allowing communication with the LCD using only 

two wires (SDA and SCL), streamlining the wiring process for easy integration with 

microcontrollers like Arduino. 

Pin Number Pin Name Function 

1 Gnd Supply & Logic ground 

2 Vcc Power supply of +5v 

3 SDA Serial Data Line 

4 SCL Serial Clock Line 

 

Table 3.1.5.2 Pin Description of I2C Module 

3.1.6 Soil Moisture Sensor  

           FC-28 soil moisture sensor is a soil hygrometric transducer that can read the 

amount of moisture present in the soil surrounding it. The module uses the two 

probes to pass current through the soil, and then it reads that resistance to get the 

moisture level. More water makes the soil conduct electricity more easily (less 

resistance), while dry soil conducts electricity poorly (more resistance). FC-28 offer 

enhanced protection features such as ESD protection and under voltage protection 

feature. 



22 
 

 

Fig 3.1.6: Soil Moisture Sensor Module  

FC-28 moisture sensor probes are coated with an immersion gold that protects the 

Nickel probes from oxidation. These two probes are used to pass the current through 

the soil and then the sensor reads the resistance to get the moisture values. The 

sensing radius of the module depends upon the design complexity of the module 

itself, A satellite-based passive microwave sensor will cover a very wide area of 

ground, while cheap Chinese hobby sensors can cover only 20-30 cm of land. The 

module is compatible with a wide array of microcontrollers and allows enhanced 

interface ability over a wide range of platforms. 

3.1.6.1 Features of Soil Moisture Sensor 

1. Digital Output Threshold Adjust Potentiometer 

2. Power and Digital Output Indicator LEDs 

3. Analog and Digital outputs 

4. Mounting hole for easy installation 

5. Easy to use with Microcontrollers or even with normal Digital/Analog IC 



23 
 

6. Small, cheap, and easily available 

7. ESD protection 

8. Undervoltage Protection 

3.1.6.2 Pin Description of Soil Moisture Sensor 

       The FC-28 soil moisture sensor has three pins for easy connection to other 

devices. The VCC pin is for power, connecting to the positive power supply. The 

GND pin is the ground connection, linking to the negative power supply. The SIG 

pin outputs an analog signal representing soil moisture levels, making it compatible 

with microcontrollers like Arduino. This sensor helps monitor and control soil 

moisture, ensuring optimal conditions for plant growth in a straightforward and 

accessible way. 

Pin Number Pin Name Function 

1 Vcc he Vcc pin powers the module, typically with 

+5V 

2 Gnd Power Supply Ground 

3 A0 Digital Out Pin for Digital Output 

4 D0 Analog Out Pin for Analog Output 

 

Table 3.1.6.2 Pin Description of soil moisture sensor 

3.1.7 Water Pump 5v 

Micro dc 3-6v micro submersible pump mini water pump for fountain garden 

mini water circulation system diy project dc 3v to 6v submersible pump micro 

mini submersible water pump 3v to 6vdc water pump for diy dc pump for 



24 
 

hobby kit mini submersible pump motor this is a low cost, small size 

submersible pump motor which can be operated from a 2.5 ~ 6V power 

supply. It can take up to 120 liters per hour with very low current consumption 

of 220ma. Just connect tube pipe to the motor outlet, submerge it in water and 

power it. Make sure that the water level is always higher than the motor. The 

dry run may damage the motor due to heating and it will also produce noise. 

 

Fig 3.1.7 : 5v Water Pump  

3.1.7.1 Features of 5v Water Pump 

1. Voltage: 2.5-6V 

2. Maximum lift: 40-110cm / 15.75"-43.4" 

3. Flow rate: 80-120L/H 

4. Outside diameter: 7.5mm / 0.3" 

5. Inside diameter: 5mm / 0.2" 

6. Diameter: Approx. 24mm / 0.95" 

7. Length: Approx. 45mm / 1.8" 

8. Height: Approx. 30mm / 1.2" 

9. Material: Engineering plastic 

10. Driving mode: DC design, magnetic driving 



25 
 

3.2 NODE MCU ESP32 MICRO-CONTROLLER 

           The ESP32 module is a highly versatile microcontroller developed by 

Espressif Systems. It boasts a dual-core Xtensa LX6 processor, providing 

enhanced processing capabilities for a variety of applications. Equipped with 

built-in Wi-Fi and Bluetooth support, the ESP32 is ideal for IoT projects, 

allowing seamless wireless communication. Its extensive set of GPIO pins, 

including digital and analog options, makes it adaptable for interfacing with 

sensors and peripherals. Security features, like hardware-accelerated 

encryption, enhance data protection in IoT applications. With compatibility 

for programming languages such as Arduino, Micro Python, and the Espressif 

IoT Development Framework, the ESP32 caters to a broad user base, from 

hobbyists to professionals. 

 

 

Fig 3.2 (a) ESP32 MICRO CONTROLLER MODULE 

In addition to its technical prowess, the ESP32's popularity stems from its compact 

size, low power consumption, and user-friendly programmability. Its ability to 

function as a standalone microcontroller or connect to other devices via Wi-Fi and 

Bluetooth makes it a go-to choice for projects ranging from home automation to 

industrial applications. The ESP32's robust capabilities, ease of use, and strong 

community support have solidified its position as a key player in the ever-expanding 

landscape of microcontrollers and IoT development. 



26 
 

 

Fig 3.2 (b) PIN OUT OF ESP32 MICRO CONTROLLER MODULE 

 

3.2.1 Applications 

             The ESP32 module finds applications in diverse fields, serving as the brain 

of smart home devices like thermostats and lighting systems. It powers wearable 

gadgets, enabling fitness trackers and smartwatches to connect seamlessly to other 

devices. In industrial settings, the ESP32 facilitates automation by controlling 

machinery and collecting data for monitoring. In agriculture, it aids in creating smart 

irrigation systems, while its use in educational projects helps students learn about 

electronics and programming. With its compact size and wireless capabilities, the 

ESP32 is a versatile choice for projects ranging from simple DIY setups to complex 

IoT applications. 

 

 

3.3 Features of Micro controller 

1. Dual-Core Processor: Dual-core Xtensa LX6 processor for improved 

processing capabilities. 

2. Wireless Connectivity: Built-in Wi-Fi and Bluetooth 

3. Peripheral Interfaces: Rich set of digital and analog input/output pins. 



27 
 

UART, SPI, I2C, PWM 

4. 30 × programmable GPIOs 

5. Memory: 520 KiB RAM, 448 KiB ROM 

6. Ultra-low power (ULP) co-processor 

7. IEEE 802.11 standard security features all supported, including WPA, 

WPA2, WPA3 (depending on version) [5] and WLAN Authentication and 

Privacy Infrastructure (WAPI) 

8. Power management: Individual power domain for RTC 

9. I/O pins: 28 

10.  Timers: Two 32 bit / Four 16-bit timers 

11. PWM: 16 Channels 

12. UART: Yes 

13. 2 x I2s interfaces 

The ESP32 stands out with its dual-core processing power, enabling efficient 

multitasking and improved overall performance. Its built-in Wi-Fi and Bluetooth 

capabilities make it a go-to choice for seamless connectivity in Internet of Things 

(IoT) projects, allowing devices to communicate effortlessly. The 

microcontroller offers extensive peripheral support, featuring digital and analog 

pins, along with interfaces like UART, SPI, I2C, and PWM, providing versatility 

for connecting various sensors and peripherals. Security is a priority, with 

hardware-accelerated encryption ensuring the safe transmission of data, a critical 

feature for protecting sensitive information in IoT applications. The ESP32's ease 

of programmability, supporting popular languages like Arduino and Micro 

Python, caters to a diverse user base, making it accessible for both beginners and 

experienced developers. Moreover, its compact size and low power consumption 

make the ESP32 an ideal choice for a wide range of applications, from wearables 

to energy-efficient IoT devices. 

 

 



28 
 

3.4 PIN DIAGRAM OF Xtensa LX6 processor 

The Xtensa LX6 processor in the ESP32 is a dual-core engine designed for efficient 

and powerful performance. With two processing units, it enables the ESP32 to 

handle multiple tasks simultaneously, enhancing overall responsiveness. The 

processor's architecture is optimized for embedded systems and Internet of Things 

(IoT) applications, providing a balance between performance and energy efficiency. 

Its dual-core design allows for effective multitasking, making the ESP32 well-suited 

for a variety of computing needs. The Xtensa LX6 contributes to the ESP32's 

capability to execute complex instructions, making it a reliable choice for a wide 

range of projects, from smart home devices to industrial automation. 

 

 

 

 

 

 



29 
 

DESCRIPTION OF EACH PIN OF ESP32 MICRO-CONTROLLER 

MODULE 

Pin number Description Function 

1 VDDA Analog power supply (2.3 V 

∼ 3.6 V) 

2 LNA_IN RF input and output 

3 VDD3P3 Analog power supply (2.3 V 

∼ 3.6 V) 

4 VDD3P3 Analog power supply (2.3 V 

∼ 3.6 V) 

5 SENSOR_VP GPIO36, ADC1_CH0, 

RTC_GPIO0 

6 SENSOR_CAPP GPIO37, ADC1_CH1, 

RTC_GPIO1 

7 SENSOR_CAPN GPIO38, ADC1_CH2, 

RTC_GPIO2 

8 SENSOR_CN GPIO39, ADC1_CH3, 

RTC_GPIO3 

9 CHIP_PU High: On; enables the chip 

Low: Off; the chip shuts 

down 

10 VDET_1 GPIO34, ADC1_CH6, 

RTC_GPIO4 

11 VDET_2 GPIO35, ADC1_CH7, 

RTC_GPIO5 

12 32K_XP GPIO32, ADC1_CH4, 

RTC_GPIO9, TOUCH9, 

32K_XP (32.768 kHz crystal 

oscillator input) 

13 32K_XN GPIO33, ADC1_CH5, 

RTC_GPIO8, TOUCH8, 

32K_XN (32.768 kHz crystal 

oscillator output) 

14 GPIO25 GPIO25, ADC2_CH8, 

RTC_GPIO6, DAC_1, 

EMAC_RXD0 



30 
 

15 GPIO26 GPIO26, ADC2_CH9, 

RTC_GPIO7, DAC_2, 

EMAC_RXD1 

16 GPIO27 GPIO27, ADC2_CH7, 

RTC_GPIO17, TOUCH7, 

EMAC_RX_DV 

17 MTMS GPIO14, ADC2_CH6, 

RTC_GPIO16, TOUCH6, 

EMAC_TXD2, HSPICLK, 

HS2_CLK, SD_CLK 

18 MTDI GPIO12, ADC2_CH5, 

RTC_GPIO15, TOUCH5, 

EMAC_TXD3, HSPIQ, 

HS2_DATA2, SD_DATA2 

19 VDD3P3_RTC Input power supply for RTC 

IO (2.3 V ∼ 3.6 V) 

20 MTCK GPIO13, ADC2_CH4, 

RTC_GPIO14, TOUCH4, 

EMAC_RX_ER, HSPID, 

HS2_DATA3, SD_DATA3 

21 MTDO GPIO15, ADC2_CH3, 

RTC_GPIO13, TOUCH3, 

EMAC_RXD3, HSPICS0, 

HS2_CMD, SD_CMD 

22 GPIO2 ADC2_CH2, RTC_GPIO12, 

TOUCH2, HSPIWP, 

HS2_DATA0, SD_DATA0 

23 GPIO0 ADC2_CH1, RTC_GPIO11, 

TOUCH1, EMAC_TX_CLK, 

CLK_OUT1, 

24 GPIO4 GPIO4, ADC2_CH0, 

RTC_GPIO10, TOUCH0, 

EMAC_TX_ER, HSPIHD, 

HS2_DATA1, SD_DATA1 

25 GPIO16 GPIO16, HS1_DATA4, 

U2RXD, 

26 VDD_SDIO Output power supply: 1.8 V 

or the same voltage as 

VDD3P3_RTC 

27 GPIO17 GPIO17, HS1_DATA5, 

U2TXD, 

EMAC_CLK_OUT_180 

28 SD_DATA_2 GPIO9, HS1_DATA2, 

U1RXD, SD_DATA2, 

SPIHD 



31 
 

29 SD_DATA_3 GPIO10, HS1_DATA3, 

U1TXD, SD_DATA3, 

SPIWP 

30 SD_CMD GPIO11, HS1_CMD, 

U1RTS, SD_CMD, SPICS0 

31 SD_CLK GPIO6, HS1_CLK, U1CTS, 

SD_CLK, SPICLK 

32 SD_DATA_0 GPIO7, HS1_DATA0, 

U2RTS, SD_DATA0, SPIQ 

33 SD_DATA_1 GPIO8, HS1_DATA1, 

U2CTS, SD_DATA1, SPID 

34 GPIO5 GPIO5, HS1_DATA6, 

VSPICS0, EMAC_RX_CLK 

35 GPIO18 GPIO18, HS1_DATA7, 

VSPICLK 

36 GPIO23 GPIO23, HS1_STROBE, 

VSPID 

37 VDD3P3_CPU Input power supply for CPU 

IO (1.8 V ∼ 3.6 V) 

38 GPIO19 GPIO19, U0CTS, VSPIQ 

39 GPIO22 GPIO22, U0RTS, VSPIWP, 

EMAC_TXD1 

40 U0RXD GPIO3, U0RXD, 

CLK_OUT2 

41 U0TXD GPIO1, U0TXD, 

CLK_OUT3, EMAC_RXD2 

42 GPIO21 GPIO21, VSPIHD, 

EMAC_TX_EN 

43 VDDA Analog power supply (2.3 V 

∼ 3.6 V) 

44 XTAL_N External crystal output 

45 XTAL_P External crystal input 



32 
 

46 VDDA Analog power supply (2.3 V 

∼ 3.6 V) 

47 CAP2 Connects to a 3.3 nF (10%) 

capacitor and 20 k Ω resistor 

in parallel to CAP1 

48 CAP1 Connects to a 10 nF series 

capacitor to ground 

 

Table 3.5: Pin Description of Xtensa Lx6 Processor 

3.5 BASIC TERMINOLOGIES IN ESP32 

3.5.1 Analog to Digital Converter (ADC) 

1. ADC Channels: The ESP32 has multiple ADC channels, typically labeled as 

ADC1_CH0, ADC1_CH1, ..., ADC2_CH0, ADC2_CH1, etc. Each channel 

corresponds to a specific pin on the ESP32 that can be used for analog input. 

2. Voltage Range: The ADC in the ESP32 typically operates in the range of 0 

to 3.3 volts. Make sure that the analog signal you're measuring falls within 

this range to avoid damaging the ADC. 

3. Resolution: The ADC in the ESP32 has a configurable resolution, usually 

ranging from 9 to 12 bits. Higher resolution provides more precise 

measurements but requires more processing time. 

4. Reference Voltage: The ESP32 allows you to set the reference voltage for 

the ADC. The default reference voltage is usually the supply voltage (VDD), 

but you can also use an external reference voltage for more accurate 

measurements. 

5. Functionality: The ESP32 ADC can be used in both single-ended and 

differential modes. In single-ended mode, the voltage is measured with 

respect to ground, while in differential mode, the voltage difference between 

two channels is measured. 



33 
 

6. Reading ADC Values: To read analog values using the ADC in the ESP32, 

you typically use functions provided by the ESP32 SDK or the Arduino IDE. 

In Arduino, you may use functions like analogRead( ) to obtain the ADC 

values. 

3.5.2 Pulse Width Modulation (PWM) 

1. PWM Channels: The ESP32 provides multiple PWM channels, each 

associated with a specific GPIO pin. The number of PWM channels 

available depends on the specific ESP32 module or development board 

you are using. 

2. Frequency and Duty Cycle: PWM allows you to control the frequency 

and duty cycle of the output signal. The frequency determines how fast the 

PWM signal oscillates, while the duty cycle represents the percentage of 

time the signal is high compared to the total period. Higher duty cycles 

correspond to higher average voltages. 

3. Pins with PWM Support: Not all GPIO pins on the ESP32 support PWM. 

You need to refer to the documentation or pinout diagram of your specific 

ESP32 module to identify which pins are PWM-enabled. 

4. Using PWM in Arduino IDE: If you're using the Arduino IDE to program 

the ESP32, you can use the analogWrite() function to generate PWM 

signals. The function takes a pin number and a duty cycle value (ranging 

from 0 to 255). 

 

 

 



34 
 

 

 

 

 

 

 

 

 

CHAPTER – 4 

SOFTWARE SYSTEM REQURIMENTS 

 

 

 

 

 

 

 

 



35 
 

4.1 Language Reference 

              The ESP32, a tiny computer, can be programmed using two main 

languages: C and C++. If you're using the official Espressif IoT Development 

Framework (ESP-IDF), you'll mainly work with C. There's a helpful 

documentation on the Espressif website that explains how to use different 

functions and features for ESP32. On the other hand, if you're using the 

Arduino framework, you'll write code in a simpler version of C++ that is more 

beginner-friendly. The Arduino framework hides some of the complicated 

details, making it easier for people who are just starting. You can find 

information about ESP32 functions and libraries in the Arduino reference. 

Whether you choose ESP-IDF or Arduino depends on your project needs and 

how comfortable you are with each approach - whether you want more control 

(ESP-IDF) or an easier way to get started (Arduino). 

4.2 SOFTWARE REQUIREMENTS 

4.2.1 Embedded C 

             Embedded C programming for the ESP32 involves using the C 

programming language to develop software for the microcontroller. The ESP32 is a 

versatile microcontroller with integrated Wi-Fi and Bluetooth capabilities, and it's 

commonly programmed using the Espressif IoT Development Framework (ESP-

IDF). Embedded C, in the context of ESP32, involves writing code that directly 

interacts with the hardware features of the microcontroller, such as GPIO pins, 

peripherals (like ADC and PWM), and communication interfaces (Wi-Fi and 

Bluetooth). The ESP-IDF provides a set of APIs, libraries, and documentation that 

allow developers to harness the full potential of the ESP32. The code written in 

Embedded C for ESP32 is typically more low-level and hardware-centric compared 



36 
 

to using higher-level frameworks like Arduino, providing greater control and 

optimization possibilities. Understanding the ESP-IDF documentation and APIs is 

crucial for efficiently utilizing the ESP32's features in Embedded C programming. 

4.2.2 Different between C and Embedded C 

          C and Embedded C are essentially the same language, but their usage contexts 

distinguish them. C is a versatile, general-purpose programming language employed 

in diverse applications, from desktop software to server development. On the other 

hand, Embedded C is a subset of C crafted specifically for programming embedded 

systems, such as microcontrollers and IoT devices, which operate under resource 

constraints. Embedded C focuses on efficiency in managing limited memory and 

system resources, often providing specialized libraries and features for low-level 

programming and hardware interfacing. While C assumes ample resources, 

Embedded C is tailored to optimize code for size and performance in the embedded 

system environment, requiring specific tools and compilers provided by 

microcontroller manufacturers for development. 

4.2.3 HTML 

          In your project, HTML (Hypertext Markup Language) plays a crucial role in 

creating the structure and layout of the web interface. HTML is like the blueprint of 

a webpage, defining elements such as titles, paragraphs, and links. In simple terms, 

it helps organize and present information on the monitoring system's display. For 

example, it specifies where to show temperature, humidity, and other sensor data. 

Additionally, by embedding HTML code in your Arduino sketch, you're able to 

dynamically update and showcase real-time information, making it accessible and 

visually appealing for users monitoring the environmental conditions through a web 

browser. 



37 
 

4.2.4 CSS 

           In your project, CSS (Cascading Style Sheets) is employed to enhance the 

visual presentation and appearance of the web interface created with HTML. CSS 

acts like a stylist, determining the colors, fonts, and layout of the displayed elements. 

It allows you to make the monitoring system interface not only informative but also 

visually engaging and user-friendly. For instance, CSS is used to define the 

background colors, text styles, and animations, giving a polished look to the 

temperature, humidity, and other sensor readings. By incorporating CSS into your 

project, you ensure a pleasant and well-designed user experience, making the 

monitoring system visually appealing and easy to navigate. 

4.2.5 JAVA SCRIPT 

             In your project, JavaScript is utilized to dynamically update and refresh 

sensor data on the web interface without requiring the user to manually reload the 

page. Acting as the interactive engine, JavaScript constantly communicates with the 

server, fetching and displaying real-time information such as temperature, humidity, 

and other sensor readings. This enhances the user experience by providing timely 

and automatic updates, ensuring that the displayed data is always current. 

JavaScript's role is like a behind-the-scenes coordinator, making the monitoring 

system responsive and efficient in delivering live sensor information to users as it 

becomes available. 

 

 

 

 



38 
 

4.3 ARDUINO IDE 

 

Fig 4.3 : Arduino IDE Logo 

The Arduino IDE (Integrated Development Environment) is a user-friendly software 

tool that helps people create and program projects using Arduino microcontrollers. 

It serves as a virtual workspace where you write, edit, and upload code to control 

electronic components. Think of it like a digital workshop where you can easily 

design, experiment, and bring your ideas to life, even if you're not an expert in 

programming. The IDE simplifies the process of coding for Arduino, making it 

accessible for beginners and experienced makers alike, providing a platform to turn 

creative concepts into functioning electronic projects. 

 

4.3.1 UPLOADING OF SOFTWARE TO ESP32 MICRO-CONTROLLER 

            Uploading software to an ESP32 board can be accomplished through the 

Arduino IDE or the Espressif IoT Development Framework (ESP-IDF). In the 

Arduino IDE, after installing the software and ESP32 board support, select the 

appropriate board, connect the ESP32 via USB, choose the correct COM port, and 

click "Upload" to transfer your code. Alternatively, when using the ESP-IDF, install 



39 
 

and configure the framework, set up environment variables, navigate to your project 

directory, configure project settings, and finally build and flash the code to the 

ESP32 using the command line. Monitoring the serial output can be done optionally 

to view debug information. Specific details may vary, so consulting the respective 

documentation for the chosen development environment is recommended for precise 

instructions. 

 

4.4 Steps to Upload Code to ESP32 using Arduino IDE 

4.4.1 Install Arduino IDE 

• Visit the official Arduino website at https://www.arduino.cc/en/software. 

Click on the "Software" tab, and then select the appropriate version for your 

operating system (Windows, macOS, or Linux). 

         

 

• Click on Windows win10 and newer,64bit download 



40 
 

• And click just download and it will download, press ctrl+j for download 

conformation  

 

 

4.4.2 Run Installer 

Once the download is complete, run the installer file that you obtained in the 

previous step. 

 

 

4.4.3 Install ESP32 Board Support 



41 
 

• Open the Arduino IDE, go to "File" > "Preferences," and add the ESP32 

board support URL to the Additional Boards Manager URLs. The URL 

is: https://dl.espressif.com/dl/package_esp32_index.json 

• Then, go to "Tools" > "Board" > "Boards Manager," search for "esp32," 

and install the ESP32 board support. 

 

4.4.4 Select ESP32 Board 

• In the Arduino IDE, go to "Tools" > "Board" and select your specific ESP32 

board from the list. Choose the appropriate variant and upload speed. 

• After following these steps, you should have a fully installed Arduino IDE 

on your computer, ready to be used for programming Arduino boards, 

including the ESP32. 

https://dl.espressif.com/dl/package_esp32_index.json


42 
 

 

4.4.5 WRITE CODE 

          Write your Arduino sketch or open an existing one. Ensure that your code is 

compatible with the ESP32 and contains the necessary configurations. 

 

4.4.6 Upload Code 

   Click the "Upload" button (right arrow icon) in the Arduino IDE. This will compile 

your code and upload it to the ESP32. The status will be displayed in the bottom 

console, and any errors will be shown if there are issues during the upload process. 



43 
 

 

4.5 USER INTERFACE USING HTML AND CSS 

4.5.1 Install Visual Studio Code 

     Download and install Visual Studio Code from the official website: Visual Studio 

Code 

 

Open VS Code and go to the Extensions view by clicking on the Extensions icon in 

the Activity Bar on the side of the window or press Ctrl+Shift+X. 



44 
 

 

• Click on "New Project" and select your board (ESP32). Follow the prompts 

to set up a new project. 

• Open your HTML and CSS files in the VS Code editor and start coding your 

user interface. You can use standard HTML and CSS syntax. 

 

• Check preview by clicking run / Alt+B  



45 
 

 

• Upload  code from APPENDIX to esp32 module and connect the sensors as 

per circuit and check the values 

 

4.6 HTTP PROTOCOL 

In your project, the HTTP (Hypertext Transfer Protocol) protocol serves as the 

communication method between the ESP32-based monitoring system and the web 

browser. It's like a set of rules that allows the devices to exchange information. 

When you access the monitoring system through a web browser, the browser uses 

HTTP to request data from the ESP32. The ESP32 then responds, providing the 

requested information, such as sensor readings and system status. It's similar to a 

conversation where one side asks questions (HTTP requests), and the other side 

provides answers (HTTP responses), enabling seamless and standardized 

communication between the monitoring system and the user's browser. 

 



46 
 

 

 

 

 

 

 

4.6.1 Explanation of commonly used HTTP Protocol 

1) GET - Requests data from a specified resource. It should have no side effects on 

the server. 

2) POST - Submits data to be processed to a specified resource. It may lead to a 

change in state on the server. 

3) PUT - Updates a resource or creates a new resource if it does not exist at the 

specified URI. 

4) DELETE - Deletes the specified resource. 

5) HEAD - Requests the headers of the specified resource without the actual data. 

It's often used to check if a resource has changed. 

6) OPTIONS - Requests information about the communication options available for 

the target resource. 

7) PATCH -Applies partial modifications to a resource. 

8) TRACE - Performs a message loop-back test along the path to the target resource. 

9) CONNECT- Establishes a network connection to the target resource. 

 

HTTP PROTOCOL 

GET POST PUT DELETE HEAD OPTIONS PATCH TRACE 

TYPES OF HTTP PROTOCOLS 

CONNECT 



47 
 

EXAMPLE: 

  request->send(200, "text/html", html); 

  }); 

 

  // Route to provide sensor values as JSON 

  server.on("/sensorValues", HTTP_GET, [](AsyncWebServerRequest *request){ 

    String sensorValues = "{\"temperature\": " + String(dht.readTemperature(), 2) + ", 

\"moisture\": " + String(analogRead(A0)) + "}"; 

    request->send(200, "application/json", sensorValues); 

  }); 

 

  // Route to provide flame status 

  server.on("/status", HTTP_GET, [](AsyncWebServerRequest *request){ 

    String flameStatus = (digitalRead(34) == LOW) ? "Yes" : "No"; 

    request->send(200, "text/plain", flameStatus); 

  }); 

4.7 SMTP PROTOCOL 

SMTP, or Simple Mail Transfer Protocol, is a widely used network protocol for the 

transmission of electronic mail (email) between computers. It's the protocol 

responsible for sending emails from a client to a server or between servers. Here's a 

brief explanation of how SMTP works: 

1. Communication Flow: 



48 
 

• Client-Server Interaction: SMTP operates on a client-server model. 

An email client (like Outlook or Thunderbird) communicates with an 

SMTP server to send emails. 

• Server-to-Server Communication: When an email is sent from one 

domain to another, the SMTP server of the sender communicates with 

the SMTP server of the recipient. 

2. Port and Security: 

• Port Number: SMTP typically uses port 25 for unencrypted 

communication and port 587 for encrypted communication 

(STARTTLS). Port 465 is also sometimes used for secure SMTP over 

SSL/TLS. 

• Security: In modern email systems, encryption (SSL/TLS) is often 

used to secure the communication between the email client and the 

server, preventing eavesdropping. 

3. Commands and Responses: 

• Commands: The client issues commands to the server to send an email, 

specify recipients, etc. Common commands include EHLO (identify the 

client), MAIL FROM (specify the sender), RCPT TO (specify the 

recipient), DATA (start message transmission), etc. 

• Responses: The server responds to each command, indicating success 

or providing error information. 

4. Message Format: 



49 
 

• Header and Body: The email message is divided into two parts: the 

header and the body. The header contains metadata like sender, 

recipient, subject, etc., while the body contains the actual message. 

• Termination: The end of the message is indicated by a special 

sequence (CRLF.CRLF). 

5. Relaying and Forwarding: 

• Relaying: SMTP servers can relay messages to other servers if the 

recipient is not on the same server. This facilitates email 

communication across different domains. 

• Forwarding: Servers may also forward emails to the next server in the 

destination domain until the email reaches its final destination. 

6. Authentication: 

• Authentication Methods: To prevent unauthorized access, SMTP 

servers often require authentication. Common authentication methods 

include username/password, and more secure methods like OAuth. 

 

 

 

 

 

 

 



50 
 

 

 

 

 

 

 

 

 

CHAPTER-5 

WORKING OF THE SYSTEM 

 

 

 

 

 

 

 

 



51 
 

5.1 Circuit Diagram 

 

Fig 5.1 CIRCUIT DIAGRAM OF THE SYSTEM 

The circuit diagram features a NodeMCU ESP32 microcontroller at its core, serving 

as the central processing unit. Connected to the NodeMCU are various sensors, 

including a DHT11 for temperature and humidity, a flame sensor for fire detection, 

an MQ2 gas sensor for detecting multiple gases, a SW-420 vibration sensor for 

motion detection, and a soil moisture sensor for measuring soil humidity. 

Additionally, a 5V water pump is integrated into the system. The output data from 

these sensors is processed by the NodeMCU and displayed on a 16x2 LCD using an 

I2C module, providing a user-friendly interface for monitoring environmental 

conditions. The circuit is designed to trigger the water pump based on sensor inputs, 

creating an automated system for watering plants or alerting users to potential 

hazards like fire or gas leaks. The integration of these components showcases a 

versatile and interconnected IoT (Internet of Things) system with applications in 

smart agriculture and environmental monitoring. 



52 
 

5.2 Working of the System 

         The home monitoring system project integrates an ESP32 microcontroller 

with an array of sensors including a gas sensor, flame sensor, earthquake sensor, 

soil moisture sensor, temperature, and humidity sensor, all aimed at ensuring 

comprehensive environmental monitoring within a household. The system is 

augmented with a 16x2 LCD display to provide offline data visualization. 

Additionally, it features a user-friendly web interface accessible wirelessly from 

anywhere via the internet, enabling users to monitor the real-time data remotely.  

Upon power-up, the ESP32 initializes and establishes a connection to the internet 

using Wi-Fi connectivity. Once connected, the device starts reading data from 

the various sensors deployed across the household environment. The gas sensor 

and flame sensor continuously monitor for any signs of potential hazards such as 

gas leaks or fire outbreaks. Meanwhile, the earthquake sensor remains vigilant, 

detecting any seismic activity in the vicinity. The soil moisture sensor tracks soil 

hydration levels, crucial for maintaining healthy indoor plants. Concurrently, the 

temperature and humidity sensor provides insights into the indoor climate, 

ensuring comfort and well-being. 

The collected sensor data is processed and displayed on the 16x2 LCD screen in 

real-time, allowing occupants to quickly assess the environmental conditions 

offline. Simultaneously, the device transmits this data to a dedicated web server 

where it is accessible through a user interface. Users can remotely monitor the 

environmental parameters and receive timely updates via email alerts, enhancing 

security and peace of mind. In the event of abnormal readings, such as high gas 

levels, fire, seismic activity, or unfavorable soil moisture levels, the system 

triggers automatic email alerts to notify users promptly. This proactive approach 

empowers homeowners to take necessary precautions or actions to mitigate risks 

and ensure the safety and well-being of their household.  

In summary, the home monitoring system seamlessly integrates hardware 

components, sensor technologies, and internet connectivity to provide 

comprehensive environmental monitoring and remote accessibility. Through its 

intuitive user interface and alerting mechanisms, it offers users peace of mind by 

enabling them to stay informed and proactive in safeguarding their home 

environment. 



53 
 

 

 

 

 

 

 

 

 

 

 

CHAPTER – 6 

INTERFACING AND TESTING 

 

 

 

 

 

 

 

 

 



54 
 

6.1 MICRO-CONTROLLER – DHT11 SENSOR INTERFACING 

 

 

 

Fig 6.1 : DHT-11 interfacing with ESP32 

 

 

The ESP32 microcontroller seamlessly interfaces with the DHT11 sensor, with its 

data pin connected to D2. Leveraging software libraries such as Adafruit's, the 

ESP32 efficiently captures temperature and humidity data from the DHT11 sensor. 

The DHT11 sensor provides a temperature range of 0°C to 50°C with an accuracy 

of ±2°C and a humidity range of 20% to 90% RH with an accuracy of ±5%. This 

data, spanning a wide range of environmental conditions, can be transmitted to a 

Raspberry Pi for further analysis and action via protocols like MQTT or HTTP. This 

integration facilitates the creation of robust IoT applications, enabling real-time 

monitoring and automated responses tailored to diverse environmental parameters. 



55 
 

6.2 MICRO-CONTROLLER – MQ2 SENSOR INTERFACING 

 

 

Fig 6.2: MQ2 sensor interfacing with ESP32 

  

The ESP32 microcontroller seamlessly interfaces with the MQ2 gas sensor, utilizing 

GPIO pins for communication. The MQ2 sensor detects various gases such as LPG, 

propane, methane, alcohol, and smoke. Its detection range covers concentrations 

from 300 to 10,000 ppm for LPG, 200 to 10,000 ppm for propane, and 100 to 10,000 

ppm for methane, with sensitivity adjustments possible through onboard 

potentiometers. Employing appropriate software libraries, like those available for 

Arduino, the ESP32 efficiently captures gas concentration data from the MQ2 

sensor. This data, vital for ensuring indoor air quality and detecting potential 

hazards, can be transmitted to a Raspberry Pi for further processing using 

communication protocols such as MQTT or HTTP. This integration empowers IoT 

applications to monitor and respond to gas concentrations in real-time, enhancing 

safety and environmental awareness. 



56 
 

6.3 MICRO-CONTROLLER – SW-420 SENSOR INTERFACING 

 

 

Fig 6.3 : sw-420 vibration sensor interfacing with ESP32 

 

The ESP32 microcontroller seamlessly interfaces with the SW-420 vibration sensor, 

connecting the sensor's output to a GPIO pin for data acquisition. The SW-420 

sensor detects vibrations and shocks, with a wide range of sensitivity adjustments. 

Its detection capabilities make it suitable for applications ranging from security 

systems to structural health monitoring. Leveraging software libraries compatible 

with the ESP32, such as those provided by Arduino, the microcontroller efficiently 

captures vibration data from the SW-420 sensor. This data, indicative of changes in 

the surrounding environment or equipment condition, can be transmitted to a 

Raspberry Pi for further analysis or action through communication protocols like 

MQTT or HTTP. By integrating the SW-420 vibration sensor with the ESP32, IoT 

applications gain the ability to monitor and respond to vibration events in real-time, 

enhancing safety and equipment maintenance practices. 



57 
 

6.4 MICRO-CONTROLLER – FLAME SENSOR INTERFACING 

 

 

Fig 6.4 : flame sensor interfacing with  ESP32 

 

The ESP32 microcontroller seamlessly interfaces with the IR flame sensor, 

establishing communication through GPIO pins, typically utilizing analog or digital 

signals for data transmission. The IR flame sensor is designed to detect the presence 

of flames or fire by sensing infrared radiation emitted by flames. Its sensitivity can 

be adjusted to detect flames within a specific range, making it suitable for fire 

detection applications in various environments. By incorporating compatible 

software libraries, such as those tailored for Arduino, the ESP32 efficiently captures 

flame detection data from the IR sensor. This data, crucial for early fire detection 

and prevention, can be transmitted to a Raspberry Pi for further processing and 

action via communication protocols like MQTT or HTTP. Integrating the IR flame 

sensor with the ESP32 empowers IoT applications to monitor and respond to 

potential fire hazards in real-time, enhancing safety and minimizing risks of property 

damage. 

 



58 
 

6.5 MICRO-CONTROLLER – SOIL MOISTURE SENSOR 

INTERFACING 

 

Fig 6.5 : soil moisture sensor interfacing with ESP32 

 

The ESP32 microcontroller seamlessly interfaces with the soil moisture sensor and 

water pump, utilizing GPIO pins to control the water pump's activation based on soil 

moisture readings. The soil moisture sensor measures the moisture content in the 

soil, providing data crucial for efficient plant watering. Once the soil moisture level 

falls below a predefined threshold, signaling dryness, the ESP32 triggers the 5V 

water pump to initiate watering. This integration ensures timely and automated 

watering of plants, optimizing growth conditions. By incorporating compatible 

software libraries, such as those supported by Arduino, the ESP32 efficiently reads 

soil moisture data from the sensor and controls the water pump accordingly. 

Additionally, this data can be transmitted to a Raspberry Pi for further analysis or 

monitoring, facilitating intelligent irrigation systems. Integrating the soil moisture 

sensor with the ESP32 and water pump enables IoT applications to maintain optimal 

soil moisture levels, promoting healthy plant growth while conserving water 

resources effectively. 



59 
 

 

 

 

 

 

 

 

 

 

 

CHAPTER-7 

HIGHLIGHTS 

 

 

 

 

 

 

 

 

 



60 
 

7.1 ADVANTAGES 

1. Increased Security 

2. Real-Time Data Accessibility 

3. Safety Features 

4. User-Friendly Interface 

5. Wireless Connectivity 

6.  Optimal Plant Care 

7.2 APPLICATIONS 

1. Home Security 

2. Environmental Monitoring 

3. Smart Agriculture 

4. Building Management Systems  

5. Disaster Management 

 

 

 

 

 

 

 



61 
 

RESULT 

 

 

Fig (a): Initialization and Working of Module 

 

 

 

 

Fig (b): Initialization and Working of Module 



62 
 

CONCLUSION 

 

In addition to its core functionalities, this home monitoring system offers a 

multifaceted approach to enhancing the safety and well-being of your household. By 

leveraging the capabilities of the ESP32 module and a diverse array of sensors, it 

provides a comprehensive insight into various aspects of your home environment.  

Beyond simply monitoring temperature, humidity, and soil moisture, this system 

delves deeper, offering real-time detection of potential hazards such as earthquakes, 

gas leaks, and fire outbreaks. This proactive approach to safety not only safeguards 

your property but also ensures the protection of your loved ones. The inclusion of 

motion sensors adds another layer of security, enabling you to monitor activity 

within your home even when you're away. 

Moreover, the system's ability to display this information in real-time, both on a 

dedicated website and a local screen, empowers users with actionable insights. 

Whether you're at home or halfway around the world, you can stay informed about 

your home's conditions and make informed decisions accordingly. This level of 

accessibility and convenience epitomizes the essence of a truly smart home solution. 

Furthermore, the system's versatility extends beyond mere monitoring. With the 

capability to send alerts via email, it provides timely notifications in the event of any 

anomalies, allowing for swift intervention and mitigation. This proactive approach 

not only enhances security but also promotes peace of mind, knowing that your home 

is being actively monitored and protected. 

In essence, this home monitoring system represents more than just a collection of 

sensors and devices—it embodies the convergence of technology and safety, 

offering a holistic solution for modern homeowners. Its ease of use, coupled with its 

robust feature set, makes it a cornerstone of any smart home ecosystem, ensuring 

that your home remains safe, secure, and conducive to healthy living. 

 

 

 



63 
 

 

FUTURE SCOPE 

 

       Expanding the future scope of HOME MONITERING SYSTEM holds 

immense potential for advancing its capabilities and enhancing its utility. By 

integrating an MQTT server into the architecture, you'll establish a robust foundation 

for centralized data storage and analysis. This server will serve as a repository for 

the sensor data collected by the ESP32, facilitating organized data management and 

enabling seamless integration with other systems or applications. Furthermore, 

implementing data analysis algorithms will unlock valuable insights from the 

collected data, empowering informed decision-making and facilitating predictive 

analytics. Security enhancements, including encryption, authentication protocols, 

and role-based access control, will ensure that sensitive data remains secure and 

accessible only to authorized users. With a user authentication system in place, users 

will be able to securely access the data through a personalized web interface or 

mobile application, tailored to their specific roles and permissions. Real-time alerts 

and notifications will provide users with proactive insights, enabling timely 

responses to critical events or anomalies detected by the sensors. By embracing these 

future enhancements, HOME MONITERING SYSTEM will evolve into a 

comprehensive IoT solution, empowering users with actionable insights and 

optimizing operational efficiency. 

 

 

 

 



64 
 

APPENDIX  

#include <WiFi.h> 

#include <ESPAsyncWebServer.h> 

#include <ESP32_MailClient.h> 

#include <DHT.h> 

#include <Wire.h> 

#include <LiquidCrystal_I2C.h> 

 

const char* ssid = "Pavan"; 

const char* password = "Pavan123"; 

 

#define DHTPIN 2          // Pin where the DHT11 is connected 

#define DHTTYPE DHT11     // DHT11 sensor type 

DHT dht(DHTPIN, DHTTYPE); 

LiquidCrystal_I2C lcd(0x27, 16, 2); 

 

void sendEmailNotification(bool flameDetected); 

void sendEmailNotification(float temperature); 

void sendEmailNotificationVibration(bool vibrationDetected);// Function 

declaration for sending vibration notification 

void sendEmailNotificationGas(int gasdetected); 

const char* emailSubjectGas = "Gas Detected!"; 

const char* emailBodyGas = "Gas Detected! Dangerous gas levels detected! Take 

necessary precautions."; 

 

const char* emailSenderAccount = "homemoniteringsystem@gmail.com"; 



65 
 

const char* emailSenderPassword = "dsivznmdtvpcazjp"; 

const char* smtpServer = "smtp.gmail.com"; 

const int smtpServerPort = 465; 

const char* emailSubject = "ALERT! High Temperature"; 

const int VIBRATION_PIN = 5;  // Pin connected to the vibration sensor 

const int gasSensorPin = 35; // Analog pin for MQ2 gas sensor 

const int threshold = 2500; // Adjust the threshold as needed 

const int greenLedPin = 4; // Pin for green LED 

const int redLedPin = 15;   // Pin for red LED 

 

String pumpStatus; // Initialize pump status 

String vibrationStatus = "LOW"; // Initialize vibration status 

int moistureLevel = 0; // Initialize moisture level 

const int flameDigitalPin = 34;  // Replace with the actual digital pin connected to 

the flame sensor 

bool flameDetected = false; 

float thresholdValue = 35.0; 

const int moisturePin = 32;   // Replace with the actual analog pin connected to the 

moisture sensor 

const int pumpPin = 12;       // Replace with the actual digital pin connected to the 

water pump 

int moistureThreshold = 3000;  // Adjust this threshold based on your moisture 

sensor 

string gasStatus; 

 

AsyncWebServer server(80); 

 



66 
 

String html = R"( 

<!DOCTYPE html> 

<html lang="en"> 

<head> 

    <meta charset="UTF-8"> 

    <meta name="viewport" content="width=device-width, initial-scale=1.0"> 

    <title>Home Monitoring System</title> 

 

    <style> 

        body { 

            margin: 0; 

            font-family: 'Arial', sans-serif; 

            background: linear-gradient(to right, #ff8c00, #ff007f); /* Gradient 

background */ 

            color: #ffffff; /* Text color */ 

        } 

 

        .container { 

            margin: 20px; 

            text-align: center; 

        } 

 

        /* Navbar styles */ 

        .navbar { 

            display: flex; 

            justify-content: space-between; 



67 
 

            background-color: rgba(0, 0, 0, 0.7); /* Navbar background color with 

transparency */ 

            height: 70px; 

            border: 1px solid white; 

        } 

 

        .left_bar, .right_bar { 

            display: flex; 

            align-items: center; 

        } 

 

        .a-element { 

            padding: 10px; 

            text-decoration: none; 

            margin: 2.5px; 

            color: #ffffff; 

            font-size: 14px; 

            font-weight: bold; 

            border-radius: 5px; 

            transition: background-color 0.3s ease-in-out; /* Smooth color transition */ 

        } 

 

        .a-element:hover { 

            background-color: rgba(255, 255, 255, 0.2); /* Semi-transparent white on 

hover */ 

        } 



68 
 

 

        /* Info section styles */ 

        .info-section { 

            margin-bottom: 30px; 

        } 

 

        /* Sensor data styles */ 

        .sensor-data { 

            font-size: 35px; 

            margin-top: 20px; 

        } 

 

        /* Responsive styles */ 

        @media screen and (max-width: 600px) { 

            .navbar { 

                flex-direction: column; 

                align-items: center; 

                height: auto; 

            } 

 

            .right_bar { 

                margin-top: 10px; 

            } 

        } 

 



69 
 

        /* Keyframe animation for temperature */ 

        @keyframes alertAnimation { 

            0%, 100% { 

                background-color: transparent; 

            } 

            50% { 

                background-color: #ff0000; /* Red */ 

            } 

        } 

 

        /* Apply animation to temperature */ 

        #temperature { 

            animation: alertAnimation 2s infinite; 

            border-radius: 5px; 

        } 

 

        .guide-name { 

            color: #0af7ff; /* OrangeRed */ 

            font-size: 24px; 

            font-weight: bold; 

        } 

    </style> 

</head> 

<body> 

    <div class="navbar"> 



70 
 

        <div class="left_bar"> 

            <h3 class="title">Home Monitoring System</h3> 

        </div> 

        <div class="right_bar"> 

            <a href="https://bit.ly/homemoniteringsystem" class="a-element" 

target="_blank">Home</a> 

            <a href="https://pavan-1522.github.io/home-

monitering_system/about.html" class="a-element" target="_blank">About</a> 

            <a href="https://pavan-1522.github.io/home-

monitering_system/service.html" class="a-element" target="_blank">Our 

Project</a> 

            <a href="https://bit.ly/esp32home" class="a-element" 

target="_blank">Panel</a> 

            <a href="https://pavan-1522.github.io/home-monitering_system/why.html" 

class="a-element" target="_blank">Why This</a> 

            <a href="https://pavan-1522.github.io/home-monitering_system/team.html" 

class="a-element" target="_blank">Our Team</a> 

        </div> 

    </div> 

 

    <div class="container"> 

        <h1>Comprehensive Home Monitoring System with Environmental Sensing 

using ESP32</h1> 

        <div class="info-section"> 

            <h2 id="title">Chaitanya Engineering College</h2> 

            <img 

src="https://res.cloudinary.com/dudz8iroq/image/upload/v1709373870/CECLogo_

p0uu7w.jpg" alt="no image"> 



71 
 

            <h3 id="depart">Department of Electronics and Communication 

Engineering</h3> 

            <h4 id="guide">Under The Guidance Of: <span class="guide-name">Ms. 

B. Radha Devi, M.Tech</span></h4> 

        </div> 

        <hr> 

        <!-- Your container HTML --> 

        <div class="sensor-data"> 

            <p>Temperature: <span id="temperature"> %TEMPERATURE% </span> 

&deg;C</p> 

            <p>Humidity: <span id="humidity">%humidity%</span> %</p> 

            <p>Flame Detected: <span id="flameStatus"> %FLAME% </span></p> 

            <p>Moisture Level: <span 

id="moistureStatus">%MOISTURE%</span></p> 

            <p>Water Pump: <span id="pumpStatus">%PUMP%</span></p> 

            <p>Earthquake Status: <span 

id="earthquakeStatus">%VIBRATION%</span></p> 

            <p>Gas Sensor Status: <span id="gasSensorStatus">%GAS%</span></p> 

        </div> 

    </div> 

    <script> 

      function refreshPage() { 

            setTimeout(() => { 

                location.reload(); 

            }, 1000); // Refresh every 1000 milliseconds (1 second) 

        } 

 



72 
 

        // Call the function initially 

        refreshPage(); 

    </script> 

</body> 

</html> 

)"; 

 

String processor(const String& var) { 

    if (var == "TEMPERATURE") { 

        // Read the temperature from the DHT sensor 

        float temperature = dht.readTemperature(); 

        // Convert temperature to string with two decimal places 

        return String(temperature, 2); 

    } 

    // Add more variables as needed 

    return String(); 

} 

 

void setup() { 

    Serial.begin(115200); 

 

    // Connect to Wi-Fi 

    WiFi.begin(ssid, password); 

    while (WiFi.status() != WL_CONNECTED) { 

         delay(500); 



73 
 

         digitalWrite(greenLedPin, LOW); // Ensure green LED is off while 

connecting 

         digitalWrite(redLedPin, HIGH);  // Turn on red LED to indicate no 

connection 

         delay(500); 

         digitalWrite(redLedPin, LOW);   // Turn off red LED 

         Serial.println("Connecting to WiFi..."); 

        } 

    Serial.println("Connected to WiFi"); 

    digitalWrite(greenLedPin, HIGH); 

    Serial.println(WiFi.localIP()); 

 

    dht.begin(); 

    pinMode(flameDigitalPin, INPUT); 

    pinMode(moisturePin, INPUT); 

    pinMode(pumpPin, OUTPUT); 

    digitalWrite(pumpPin, LOW); 

    pinMode(gasSensorPin, INPUT); 

    pinMode(VIBRATION_PIN, INPUT); // Set the vibration sensor pin as input 

    pinMode(greenLedPin, OUTPUT); 

    pinMode(redLedPin, OUTPUT); 

 

  server.on("/", HTTP_GET, [](AsyncWebServerRequest *request) { 

    String dynamicHtml = html; 

    dynamicHtml.replace("%TEMPERATURE%", String(dht.readTemperature(), 

2).c_str()); 



74 
 

    dynamicHtml.replace("%humidity%", String(dht.readHumidity()).c_str()); // 

Update humidity value 

    dynamicHtml.replace("%MOISTURE%", String(moistureLevel).c_str()); 

    dynamicHtml.replace("%GAS%", String(gasStatus.c_str())); 

    dynamicHtml.replace("%FLAME%", flameDetected ? "Yes" : "No"); 

    dynamicHtml.replace("%VIBRATION%", vibrationStatus.c_str()); 

    dynamicHtml.replace("%PUMP%", pumpStatus.c_str()); 

    request->send(200, "text/html", dynamicHtml); 

}); 

 

    server.on("/", HTTP_GET, [](AsyncWebServerRequest *request) { 

        // Serve HTML page 

        request->send(200, "text/html", html); 

    }); 

 

    server.begin(); 

  lcd.begin(); 

  lcd.backlight(); 

 

  lcd.print("ESP32 Monitoring"); 

  lcd.setCursor(0, 1); 

  lcd.print("System"); 

  delay(2000); 

  lcd.clear(); 

} 

 



75 
 

void loop() { 

   // checking wifi status 

  if (WiFi.status() != WL_CONNECTED) { 

    // Wi-Fi disconnected, turn on red LED 

    digitalWrite(greenLedPin, LOW); 

    digitalWrite(redLedPin, HIGH); 

  } else { 

    // Wi-Fi connected, turn off red LED 

    digitalWrite(redLedPin, LOW); 

  } 

    // Reading sensor data 

    float temperature = dht.readTemperature(); 

    moistureLevel = analogRead(moisturePin); 

    int gasValue = analogRead(gasSensorPin); 

 

    // Check if temperature exceeds the threshold value 

    if (temperature > thresholdValue) { 

        // Send email notification 

        sendEmailNotification(temperature); 

    } 

 

    delay(1000); // Wait for 1 second before reading sensor again 

 

    flameDetected = digitalRead(flameDigitalPin) == LOW; 

 



76 
 

    delay(500);  // delay half second to read sensor data 

    if (flameDetected) { 

        sendEmailNotification(flameDetected); 

    } 

    else { 

        Serial.println("No flame detected"); 

    } 

 

    // Moisture sensor starts 

    moistureLevel = analogRead(moisturePin); 

    if (moistureLevel > moistureThreshold) { 

        // Turn on the water pump 

        digitalWrite(pumpPin, HIGH); 

        pumpStatus = "On"; 

    } 

    else { 

        // Turn off the water pump 

        digitalWrite(pumpPin, LOW); 

        pumpStatus = "Off"; 

    } 

 

    delay(1000);  // Adjust the delay as needed 

 

    // Vibration sensor starts 

    bool vibrationDetected = digitalRead(VIBRATION_PIN) == HIGH; 



77 
 

    if (vibrationDetected) { 

        // Send email notification for vibration detected 

        sendEmailNotificationVibration(vibrationDetected); 

        vibrationStatus = "HIGH"; 

    } 

    else { 

        vibrationStatus = "LOW"; 

    } 

 

    // MQ2 sensor starts 

    Serial.println("Gas sensor value: " + String(gasValue)); 

    int gasDetected = gasValue > threshold; 

    if (gasValue > threshold) { 

        gasStatus="detected"; 

        sendEmailNotificationGas(gasDetected); 

        Serial.println("Email sent!"); 

        delay(5000); // Wait for a minute to avoid sending multiple emails in a short 

time 

    }else{ 

      gasStatus="not deteceetd"; 

    } 

 

      // Display flame status 

  lcd.setCursor(0, 0); 

  lcd.print("Temp: "); 

  lcd.print(temperature); 



78 
 

  lcd.print("c"); 

 

  // Display temperature 

  lcd.setCursor(0, 1); 

  lcd.print("Hum: "); 

  lcd.print(dht.readHumidity()); 

  lcd.print(" C"); 

 

  delay(4000); 

  lcd.clear(); 

 

  // Display humidity 

  lcd.setCursor(0, 0); 

  lcd.print("Flame: "); 

  lcd.print(flameDetected ? "Yes" : "No"); 

 

  // Display earthquake status 

  lcd.setCursor(0, 1); 

  lcd.print("Earthquake: "); 

  lcd.print(vibrationStatus); 

 

  delay(4000); 

  lcd.clear(); 

 

  // Display soil moisture 



79 
 

  lcd.setCursor(0, 0); 

  lcd.print("Soil data: "); 

  lcd.print(moistureLevel); 

 

  // Display pump status 

  lcd.setCursor(0, 1); 

  lcd.print("Pump: "); 

  lcd.print(pumpStatus); 

 

  delay(4000); 

  lcd.clear(); 

 

    // Display MQ2 value 

  lcd.setCursor(0, 0); 

  lcd.print("Gas data: "); 

  lcd.print(gasValue); 

 

  // Display pump status 

  lcd.setCursor(0, 1); 

  // lcd.print("ip: "); 

  lcd.print(WiFi.localIP()); 

  delay(4000); 

  lcd.clear(); 

} 

 



80 
 

void sendEmailNotification(bool flameDetected) { 

    SMTPData smtpData; 

    smtpData.setLogin(smtpServer, smtpServerPort, emailSenderAccount, 

emailSenderPassword); 

    smtpData.setSender("ESP32_Fire_Alert", emailSenderAccount); 

    smtpData.setPriority("High"); 

    smtpData.setSubject(emailSubject); 

    String emailMessage = "Flame detected, hurry up DIAL: 101 for help"; 

    smtpData.setMessage(emailMessage, true); 

    smtpData.addRecipient("pavankumarmadeti143@gmail.com"); 

    if (!MailClient.sendMail(smtpData)) { 

        Serial.println("Error sending Email, " + MailClient.smtpErrorReason()); 

    } 

    else { 

        Serial.println("Email sent successfully for fire"); 

    } 

    smtpData.empty(); 

} 

 

void sendEmailNotification(float temperature) { 

    SMTPData smtpData; 

    smtpData.setLogin(smtpServer, smtpServerPort, emailSenderAccount, 

emailSenderPassword); 

    smtpData.setSender("ESP32_Temperature_Alert", emailSenderAccount); 

    smtpData.setPriority("High"); 

    smtpData.setSubject(emailSubject); 



81 
 

    String emailMessage = "High temperature alert! Current temperature is " + 

String(temperature) + " °C."; 

    smtpData.setMessage(emailMessage, true); 

    smtpData.addRecipient("pavankumarmadeti143@gmail.com"); 

    if (!MailClient.sendMail(smtpData)) { 

        Serial.println("Error sending Email, " + MailClient.smtpErrorReason()); 

    } 

    else { 

        Serial.println("Email sent successfully for temperature"); 

    } 

    smtpData.empty(); 

} 

 

void sendEmailNotificationVibration(bool vibrationDetected) { 

    SMTPData smtpData; 

    smtpData.setLogin(smtpServer, smtpServerPort, emailSenderAccount, 

emailSenderPassword); 

    smtpData.setSender("ESP32_Vibration_Alert", emailSenderAccount); 

    smtpData.setPriority("High"); 

    smtpData.setSubject("ALERT! Vibration Detected"); 

    String emailMessage = "Vibration detected! Check the home monitoring system 

for details."; 

    smtpData.setMessage(emailMessage, true); 

    smtpData.addRecipient("pavankumarmadeti143@gmail.com"); 

    if (!MailClient.sendMail(smtpData)) { 

        Serial.println("Error sending Email, " + MailClient.smtpErrorReason()); 



82 
 

    } 

    else { 

        Serial.println("Email sent successfully for vibration"); 

    } 

    smtpData.empty(); 

} 

 

void sendEmailNotificationGas(int gasDetected) { 

    SMTPData smtpData; 

    smtpData.setLogin(smtpServer, smtpServerPort, emailSenderAccount, 

emailSenderPassword); 

    smtpData.setSender("ESP32_GAS_Alert", emailSenderAccount); 

    smtpData.setPriority("High"); 

    smtpData.setSubject("ALERT! GAS Detected"); 

    String emailMessage = "GAS detected! Check the home monitoring system for 

details."; 

    smtpData.setMessage(emailMessage, true); 

    smtpData.addRecipient("pavankumarmadeti143@gmail.com"); 

    if (!MailClient.sendMail(smtpData)) { 

        Serial.println("Error sending Email, " + MailClient.smtpErrorReason()); 

    } 

    else { 

        Serial.println("Email sent successfully for GAS"); 

    } 

    smtpData.empty(); 

} 


